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tunneling current caused instability of the tip as 
evidenced by the appearance of a high-frequency 
noise in the scan signal. 

Our X-ray diffraction results indicate that the 
orientation of the annealed Pt film is predominantly 
(111). This is consistent with the fact that the f.c.c. Pt 
{111} plane has the same symmetry as the underlying 
graphite (0001) basal plane, therefore appearing to 
be the favourite plane for epitaxic growth. This result 
is in disagreement with some of the previous studies 
of carbon on a Pt surface (Mundschau & Vanselow, 
1985; Vanselow & Mundschau, 1986) and Pt on a 
graphite surface (Santiesteban et al., 1983). In field 
emission microscopy (FEM) studies, Mundschau & 
Vanselow (1985; Vanselow & Mundschau, 1986) 
found that carbon islands preferentially form on the 
{110} area of Pt. Santiesteban et al. deposited Pt 
particles on a graphite surface and found that about 
60% of the Pt particles have (110) faces in contact 
with the basal plane of graphite. The different orienta- 
tion of our Pt film on graphite could be due to the 
difference in preparation methods. In the present 
study, the Pt coverage started at 100% while in the 
other studies the starting coverage was much lower. 
This difference in Pt coverage could play a major role 
in determining the orientation of the epitaxic layer 
(Pashley, 1965). In the present study, the metal films 
were deposited on newly cleaved graphite in a high 
vacuum system while in Santiesteban's work, no 
continuous film was formed on graphite and the 
metal particles were formed by impregnation of 
HEPtC16o6H20 followed by reduction in HE. Under- 
standably, the cleanness of the metal-graphite inter- 
face was very different between our sample and 
Santiesteban's. 

We have noticed that ambient atmosphere could 
have significant effects on the annealing process. A 
different atmosphere could result in a different crys- 
tallization temperature and even a different orienta- 
tion of the metal film. Further study will follow to 

investigate the influence of ambient gas on the anneal- 
ing process. In addition, the azimuthal relation of the 
Pt film with the substrate will be revealed in future 
studies. 

The last point that we want to raise is a possible 
usefulness of the crystallized Pt thin film formed in 
the present study. On a surface such as that shown 
in Fig. 4 there are varieties of structural features like 
terraces, edges and corners etc. The presence of these 
features makes the Pt film a candidate for a model 
catalyst which has properties between single-crystal 
catalysts due to its richness in surface features. Yet 
the thin film is clean and, most importantly, can be 
characterized by using STM and possibly STS (scan- 
ning tunneling spectroscopy) to a near atomic scale. 
A study of the catalytic properties of the thin film is 
certainly worthwhile. 

We thank Dr K. Chang for carrying out the X-ray 
diffraction measurement. 
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Abstract  

Monopole electron-density deformations for first- 
and second-row atoms are obtained using Hirshfeld 
partitioning of near Hartree-Fock-limit electron 
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densities for 28 diatomics. The K-refinement model 
[Coppens, Guru Row, Leung, Stevens, Becker & 
Yang (1979). Acta Cryst. A35, 63-72] is applied to 
these monopole deformations and its success in 
modelling them is gauged by means of deformation 
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radial distribution plots, r2Ap(r),  and K and charge- 
transfer values. The K-refinement procedure proves 
to be remarkably successful in modelling the 
monopole deformations in this work. This in large 
part explains the successful application of the K- 
refinement model to X-ray diffraction data, where it 
is capable of yielding an excellent point-charge model 
of the electrostatic potential in molecules and crystals. 

I. Introduction 

Multipole refinement of accurate X-ray diffraction 
data is now a moi'e or less routine procedure for 
obtaining more quantitative information on electron 
distributions than can be derived from electron- 
density maps. It is the method of choice, if not 
necessity, in virtually all recent electron-density 
analyses (e.g. see Coppens, 1989). There are, however, 
limitations on the applicability of such an analysis. 
These include the exceptional demands it places on 
the X-ray data, and the large number of additional 
parameters per atom which must be included in the 
least-squares-refinement procedure. It is therefore not 
surprising that recent work on the nucleotide 2'- 
deoxycytidine-5'-monophosphate (Pearlman & Kim, 
1985) resorted to a truncated version of this multipole 
refinement procedure, a monopole model. 

Monopole models allow the estimation of atomic 
net charges, and often, but not always, the resultant 
expansion or contraction of the valence-electron dis- 
tribution. Such models are not new, and were in fact 
used in the first attempts to extract quantitative infor- 
mation on electron distributions from X-ray data. Of 
the different strategies used, the L-shell projection 
method (Stewart, 1970; Coppens, Pautler & Griffin, 
1971) and projection into standard spherical atoms 
(Yanez, Stewart & Pople, 1978; Yanez & Stewart, 
1978) did not explicitly allow for changes in the shape 
of the valence shell associated with repopulation. The 
K-refinement procedure (Coppens, Guru Row, 
Leung, Stevens, Becker & Yang, 1979), on the other 
hand, incorporates expansion and contraction of 
individual atomic valence electron densities, in addi- 
tion to electron redistribution, and it is this simple 
model (two parameters per atom) which we analyse 
in some detail in this work. The K-refinement model 
has been frequently used in the past decade for the 
determination of atomic charges from X-ray diffrac- 
tion data. Major applications of K-refinement results 
have been the determination of molecular multipole 
moments, particularly dipole moments (e.g. Coppens 
et al., 1979; Moss, 1982), and exploration of concepts 
of charge and bonding in minerals (e.g. Sasaki, 
Fujino, Takeuchi & Sadanaga, 1980) and a range of 
organometallic, organic and inorganic compounds 
(e.g. Martin, Rees & Mitschler, 1982; Clemente, 
Biagini, Rees & Hermann, 1982). 

The K-refinement model yields chemically sensible 
atomic charges and sensible estimates of molecular 
properties such as the dipole moment. Formamide, 
for example, has been examined using a variety of 
techniques. The dipole moment determined from a K 
refinement for formamide agrees well with values 
obtained by other experimental methods (Coppens 
et al., 1979), and the individual atomic charges agree 
extremely well with those calculated from an ab initio 
wavefunction by fitting to the electrostatic potential 
(Chirlian & Francl, 1987). Stewart (1977) has demon- 
strated that the model electron-density function which 
best fits an observed electron density is the same 
model function which best fits the electrostatic poten- 
tial, at least for data of unlimited resolution. It is 
because of this that the atomic charges obtained from 
a K refinement based on X-ray diffraction data are 
physically reasonable, and hence they can sensibly 
be used to calculate the electrostatic potential within 
and around a molecule or crystal for use in modelling 
intermolecular interactions. This method is par- 
ticularly attractive because of the great range and 
variety of molecules and crystals amenable to the 
K-refinement procedure. 

We are currently in the process of analysing X-ray 
diffraction data sets of varying qualities on several 
different zeolites, and because of limitations provided 
by the data and the large number of atoms in the 
asymmetric unit in several of these systems, it became 
clear to us that a simple monopole refinement pro- 
cedure would be preferable to a full multipole model. 
Since we wish to use our results to investigate host- 
guest interactions in such systems, we decided to look 
more closely at the nature of the K-refinement model. 
In particular, in this work we address the question 
of how closely K-refined valence electron densities 
actually resemble real monopole deformations 
exhibited by atoms in molecules, and the implications 
this may have for the reliability of atomic charges 
and consequently the molecular properties calculated 
from them. Diatomic molecules containing first- and 
second-row atoms are used as models to obtain insight 
into the strengths and weaknesses of the K-refinement 
model. 

There are (at least) three approaches which could 
be taken in a model study of the K-refinement pro- 
cedure using diatomic molecular wavefunctions: 

(i) The monopole generalized scattering factors 
(Stewart, Bentley & Goodman, 1975; Bentley & 
Stewart, 1975) (i.e. [010] GSFs) could be obtained 
for each diatomic and these atom-centred functions 
then K refined in reciprocal space with appropriate 
atomic scattering factors. 

(ii) The electron density in the molecule could be 
fitted directly with a K-refinement model on both 
atoms in the molecule simultaneously, either in direct 
space or in reciprocal space. This is essentially what 
is done in the analysis of X-ray diffraction data, and 



A. S. BROWN AND M. A. SPACKMAN 23 

was the method pursued in earlier model studies on 
first-row diatomic hydrides (Chandler, Spackman & 
Varghese, 1980; Chandler & Spackman, 1982). 

(iii) The deformation density could be partitioned 
into 'atomic' fragments, each of which may be spheri- 
cally averaged, and the resulting single-atom electron 
densities fitted separately with a K-refinement model. 

For the present work we have adopted the latter 
approach, using the partitioning scheme devised by 
Hirshfeld (1977). This represents a compromise 
between the desire to use a procedure which is capable 
of generalization to polyatomic molecules [ruling out 
(i)], computationally straightforward [favouring 
(iii)], and as close as possible in principle to the 
analysis of X-ray diffraction data [favouring (i) or 
(ii)]. Our choice of (iii) introduces a particularly 
subtle bias: we are interested in modelling electro- 
static properties, yet the Hirshfeld partitioning at the 
monopole level yields atomic charges which systemati- 
cally underestimate molecular dipole moments by 
~35% (Maslen & Spackman, 1985). We believe this 
is of minor consequence, as our aim is to analyse the 
monopole deformations associated with each atom, 
particularly those within ---2 A. of each nucleus. For 
this purpose the Hirshfeld partitioning of p(r) should 
be entirely appropriate. We make no attempt to 
examine the adequacy of the electrostatic potential 
resulting from K refinement of a model p(r). That 
would require an approach more in line with (ii) 
above. 

2. Method 

Electron densities to be fitted by K refinement were 
constructed for a number of diatomic molecules of 
first- and second-row elements in the following way. 
The total electron densities for the molecule, pm°~(r), 
and the promolecule, pP~°(r)=~ap~t°~(r), were 
calculated directly from diatomic and atomic 
wavefunctions respectively (Clementi & Roetti, 1974; 
Cade & Huo, 1973, 1975; McLean & Yoshimine, 
1967), and the deformation electron density, Ap(r), 
obtained: 

Ap(r) = pm° ' ( r ) -  ppr°(r). (1) 

The deformation density was then partitioned 
between the two atoms using the Hirshfeld partition- 
ing scheme (Hirshfeld, 1977), in which the deforma- 
tion density is apportioned to each atom in proportion 
to the electron density that atom contributes to the 
promolecular electron density. 

Apa(r)=[pat°m(r)/ppr°(r)]Ap(r), (2) 

where Ap,(r) is the deformation density associated 
with atom a. Maslen & Spackman (1985) have shown 
that other quite disparate methods of partitioning the 
deformation electron density yield essentially the 
same results. The Hirshfeld partitioning is simple to 

apply and yields a smooth continuous Apa(r). The 
deformation densities calculated via (2) are functions 
of three variables, denoted by the vector r. The K- 
refinement model, however, represents the best fit of 
a density function having spherical symmetry to an 
electron density generally having non-spherical sym- 
metry. That is, the s: refinement is a fit to the spherical 
average of the electron density. This is accounted for 
here by numerical integration over angular coordin- 
ates, yielding a deformation density which is a func- 
tion only of ra, Apo(r,~) (i.e. origin now at nucleus a). 

The spherically averaged fragment electron density 
centred on nucleus a can be expressed as 

p'~°'(ra)=p~°re(r,,)+p~a'(r,,)+ Ap,,(r,,), (3) 

where p~°re(r,,) and p~a~(ra) are the atomic core and 
valence electron densities respectively and Apa (r~,) is 
the spherical average of (2). The last two terms in (3) 
comprise the monopole function which we fit in this 
work using the K-refinement model (i.e. the 'observa- 
tion'). It is constructed by adding the spherical atomic 
valence density to the deformation density previously 
calculated, 

pobs(r) = p"al(r) + Ap(r), (4) 

where pobs(r) is the 'observed' valence density of the 
atom in a given molecule, and the subscript a has 
been deleted for clarity. 

The model electron density used to fit this function 
is 

pcalc(r)----  pK3pval(Kr), ( 5 )  

where P is a variable population parameter allowing 
for charge transfer between atoms, K scales the radial 
extent of the valence density, p"a~(Kr) is the atomic 
valence density scaled by K, and K 3 is required to 
maintain normalization of pVal(Kr) to the number of 
valence electrons in the atom, n TM (see Coppens et 
aI., 1979). 

Fitting the electron density in direct space and in 
reciprocal space are formally equivalent, subject to 
considerations such as the use of weighting schemes 
based on experimental uncertainties (Coppens & 
Hansen, 1977) and limitations on the extent of 
reciprocal-space data. The s: refinements performed 
in direct space in the present work are thus expected 
to yield essentially the same results as would be 
obtained with reciprocal-space fitting using extensive 
data sets. 

Least-squares fits of Pcalc(r) to Pobs(r) were per- 
formed by minimizing e, 

e = j" [pobs(r) - pca,c(r)] 2 dr 

O(3 

-= 47r~ [Pob~(r)--pcal~(r)]r 2 dr 
0 

= 4"rrZ 2 ri[Pob~(ri) p~lc(r,)] 2, (6) 
i 
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where the sum is taken over 400 evenly spaced inter- 
vals out to r = 10 a.u. It was found that, for all the 
diatomics studied, the atomic charges determined by 
numerical integration in this range were insig- 
nificantly different from those obtained by Maslen & 
Spackman (1985), who performed a numerical 
integration over r from zero to infinity by Gaussian 
quadrature. Values of  the integrand in (6) for each 
of  the diatomics were effectively zero at distances 
greater than 10a.u. from the nucleus and hence 
numerical integration and least-squares fitting at dis- 
tances greater than this was unnecessary. 

3. Resul t s  

(i) Deformation radial distribution ( DRD) functions 

Although K refinement is not a fit to the deforma- 
tion density, but to a valence density which has been 
perturbed by the effects of  bonding, it is more enlight- 
ening to examine how well the deformation density 
has been modelled by the K refinement. Figs. 1 to 4 
show the deformation radial distribution (DRD) 
function, r2Ap(r), for both atoms in each diatomic 
molecule, calculated by subtraction of pva~(r) from 
both Pobs(r) and Pcalc(r), and weighting of  each point 
b y  r E . T h i s  procedure serves two purposes. The first 

is that the functions which are plotted show directly 
the 'observed' deformation density and the deforma- 
tion density calculated from a K-refined valence 
density, both appropriately weighted to account for 
the spherical symmetry of  the function. The second 
is that the plots are closely related to the net charge 
on the atoms, 

q = - j "  Ap(r) d r  

c o  

= -47r~ r2Ap(r) dr. (7) 
0 

That is, the area under the curve r2Ap(r )  vs r is 
p r o p o r t i o n a l  to the  net  a t o m i c  charge .  N o t e  that  the  
figures give plots of  the functions for r out to 8 a.u. 
only, since they are negligibly different from zero at 
greater distances for most of  the atoms. 

The most striking feature evident in these plots is 
the generally excellent fits to the 'observed' functions 
provided by the K-refinement procedure, especially 
considering that the K-refinement model is such a 
simple two-parameter model. The best fits are 
observed for those diatomics in which there is a large 
deformation density (which integrates to give large 
charge transfer between atoms). Even for the poorer 
fits the general shape (i.e. positions of maxima and 
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minima, number of nodes etc.) of the calculated func- 
tion mimics the general features of the 'observed' 
functions reasonably well, with only a few exceptions. 

We note that the monopole deformation for each 
atom considered in this work must consist of contribu- 
tions from each of the electron shells in the atom, 
although the usual approximation is that the core 
electron density remains undeformed in the bonded 
atom. Deformation of the inner-shell (K-shell) elec- 
tron densities has been demonstrated for the first-row 
hydrides by Bentley & Stewart (1976) and Chandler 
& Spackman (1982). It is not unreasonable to expect 

i 

significant L-shell deformations in second-row sys- 
tems. The present model, however, modifies only the 
valence-electron-density function in an effort to fit 
the actual monopole deformations, and could there- 
fore be expected to be less successful in fitting atoms 
which have significant core monopole deformations. 
This would appear to be the case for the second-row 
p-block atoms, for which large deformations are 
observed near the nucleus (within --0.5 a.u.; see Fig. 
1). The poorer fits of the model in these instances 
(e.g. heavy atoms in A1H, Sill, PH, SH, C1H, LiC1, 
NaC1) are probably due to the valence density 
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functions having insufficient flexibility to fit the more 
complex deformation functions observed for these 
atoms. 

The H atom in each of the first- and second-row 
hydrides (Fig. 1) and H2 (Fig. 4) is very w~ll modelled. 
Having no core electrons, hydrogen exhibits a 
monopole deformation which is due unequivocally 
to the effects of bonding on the valence electron 
density; its deformation density is relatively simple, 
having at most one node. It is noteworthy that hydro- 
gen is well modelled in each of a wide variety of 
chemical environments which the first- and second- 
row hydrides represent. In particular, the DRD func- 
tions reflect in a very obvious way the electronegativ- 
ity differences between each atom in the diatomic and 
also between the different first- and second-row ele- 
ments. For example, the H atom in LiH has a net 
negative charge [positive ~ rEAp(r)dr], while in FH 
the H atom has a net positive charge [negative 

rEAp(r) dr], with a smooth transition between these 
extremes through the intermediate hydrides. 

Of all the cases examined, the atoms which are best 
modelled by the K-refinement procedure are those 
for which the bonding is dominated by s electrons 
i.e. H and the s-block elements. Li and Na are par- 
ticularly well modelled in LiH, LiO, LiF, LiC1, Nai l ,  
NaF and NaC1 while Be and Mg in Bell, BeO, MgH 
and MgO are almost as good (Figs. 1-3). In each case 
the charge transfer is large and the DRD function 
relatively simple. 

There are interesting qualitative similarities 
between the deformations exhibited by Na and Li in 
the more 'ionic' diatomics, particularly LiF, LiC1, 
LiO, NaF and NaC1. In each case the alkali-metal 
atom has a large rather simple deformation which is 
quite diffuse, peaking at 3 to 4 a.u. from the nucleus. 
It is remarkable how virtually identical deformations 
can be accommodated by the quite different Li 2s 
and Na 3s electron-density functions. O and F also 
display similarities in the 'ionic' diatomics, having 
large uncomplicated deformations peaking 1.5 to 
2.0 a.u. from the nucleus. 

There are qualitative differences for F in 'covalent' 
and 'ionic' diatomics. BF and FH represent 'covalent' 
environments in which F exhibits small relatively 
narrow deformations. In contrast, LiF and NaF rep- 
resent more 'ionic' environments, in which the defor- 
mations of F are much larger and significantly broader 
than in BF and FH. O also shows such qualitative 
differences in its deformations in 'covalent' and 'ionic' 
diatomics, though the differences are less pronounced 
than for F. 

(ii) Net atomic charges 

The success of the K-refinement procedure for 
determining net atomic charges is of course directly 
related to its success in reproducing the deformation 

Table 1. Kappas and charge transfers, Aqcat¢ (in 
electrons), from K refinement of Apa(r) spherically 

averaged about the nuclear position of atom a 

'Obse rved '  charge t ransfer  values,  Aqobs, are f rom integrat ion o f  the parti-  
t ioned de fo rma t ion  densi ty (Maslen  & Spackman,  1985), and  are given only 
for the second  a tom in each diatomic.  

Diatomic  K Aq=lc Aqobs Dia tomic  K Aq¢~lc  Aqobs 

Li 1.129 -0-407 Li 1-249 -0.607 
H 0.907 +0.491 +0.414 O 0.972 +0.420 +0-581 

Be 1.048 -0.348 Be 1.136 -0-854 
H 1.020 +0.275 +0.193 O 0.962 +0-534 +0.646 

B 1.005 -0.069 Mg 1.025 -0.644 
H 1.100 +0.134 +0.075 O 0.963 +0.480 +0.678 

C 0.994 +0.036 Al 0.998 -0.243 
H 1.144 -0.002 -0.016 F 0-981 +0.357 +0-357 

N 0.989 +0.115 Si 1.001 -0.320 
H 1.171 -0.105 -0.091 O 0.971 +0.468 +0.461 

O 0-987 +0.192 Li 1.214 -0-629 
H 1.183 -0.183 -0.164 F 0-974 +0.448 +0.620 

F 0.986 +0.252 Na 1-057 -0.652 
H 1.182 -0.266 -0.228 F 0.974 +0-441 +0.677 

Na 1.061 -0.400 Li 1.138 -0-566 
H 0.892 +0.467 +0.413 CI 0.966 +0.301 +0.551 

Mg 0.984 -0-304 Na 1.025 -0.598 
H 0.957 +0.356 +0.282 CI 0-965 +0.322 +0.617 

AI 0.999 -0.150 B 1.008 -0.141 
H 1.003 +0.305 +0.228 F 0-988 +0.231 +0-118 

Si 0.990 -0.096 C 1.006 -0.112 
H 1.049 +0.174 +0.125 O 0.987 +0-234 +0.139 

P 0.984 -0.040 N 0.994 +0.040 
H 1.080 +0.056 +0.034 N 0.994 +0.040 0.000 

S 0.979 +0.012 N 0-998 -0.065 
H 1.104 -0.048 -0.050 O 0.991 +0.138 -0-086 

CI 0.9"16 +0.049 H 1-110 +0.031 
H 1.122 -0.139 -0.124 H 1-110 +0.031 0.000 

density. The charge transfer from one atom to another 
is determined by the population parameter, P, 

Aqcalc = n"al (P-  1"0), (8) 

where Aqcalc is the electron transfer from the atom in 
question and n TM is the number of valence electrons 
in the isolated atom. Note that Aq=l¢ refers to the 
transfer of negative charge (i.e. electrons), so that a 
positive Aqeal¢ indicates that an atom has a net nega- 
tive electrical charge. Table 1 compares the charge 
transfer for each atom calculated from the K-refined 
population parameter with that calculated by integra- 
tion of the partitioned deformation density (i.e. the 
'observed' net charge on each atom). 

As one would expect from the consideration of the 
DRD functions, the net atomic charges determined 
by K refinement generally agree very well with those 
'observed' particularly for those diatomics for which 
charge transfer is relatively large. The least-successful 
cases are those atoms which have the more compli- 
cated structure in their DRD functions, most notably 
the second-row p-block elements. The problem is 
again related to the inability of the valence density 
functions to reproduce the more highly structured 
deformation densities in these diatomics. However, 
for the cases where the deformation density is small 
(and the DRD functions do not reproduce the shape 
of the deformation very well) the charges which are 



A. S. BROWN AND M. A. SPACKMAN 27 

obtained by K refinement are still remarkably good. 
For example, B and C in BH and CH have net charges 
o f -0 .069e  and +0.036e respectively compared with 
the 'observed' charges o f -0 .075e  and +0.016e. 

It is worth emphasizing that the 'observed' charge 
transfer in this work is always less than one electron, 
even for examples such as NaC1 where one might 
expect the transfer of one electron from the Na to 
the C1. This result stems from the partitioning of the 
deformation density via (2) in the construction of an 
'observed' valence density. Maslen & Spackman 
(1985) have discussed how the Hirshfeld scheme must 
yield charge transfers which are lower than expected 
for cation-anion pairs, and note that there is no 
partitioning scheme which can retrieve all of the 
expected charge transfer from the deformation 
density. What is important here is that, given a par- 
ticular charge transfer, the K-refinement procedure is 
able to give a very good estimate of  that charge 
transfer. 

(iii) Kappas 

The K values obtained (Table 1) are correlated with 
the charge transfer as expected from the work of 
Coppens et al. (1979). That is, atoms having a net 
negative charge (positive charge transfer) have 
valence shells which are expanded relative to the 
isolated atom (K < 1.0) while atoms having a net 
positive charge (negative charge transfer) have 
valence shells contracted relative to the isolated atom 
(K > 1.0). The exceptions to this are N2, NO, MgH 
and AIF, where the valence shells of both atoms in 
each diatomic are marginally more diffuse than in the 
isolated atoms, Bell and BH where both are slightly 
contracted, and H2 in which H is significantly contrac- 
ted but there is no charge transfer. The greatest effect 
is observed for the Li atom in LiO, where there is a 
24.9% (K = 1.249) contraction of the valence-electron 
density on Li relative to the isolated atom. 

It is worthwhile comparing the range of K values 
obtained in the present work with energy-optimized 
scale factors for atoms in polyatomic hydrides, 
obtained with Gaussian expansions (STO-NG) of 
Slater-type orbitals (Hehre, Stewart & Pople, 1969; 
Hehre, Ditchfield, Stewart & Pople, 1970). For 
example, for H in CH4, NH3, H20 and HF, the 
energy-optimized exponents are 1.16, 1.23, 1.26 and 
1.32, respectively, generally larger than the present 
values of 1.144, 1.171, 1.183 and 1.182 for the 
diatomic hydrides. The second-row systems were 
treated in more detail by those authors and, for H 
bonded to Na through Cl, the energy-optimized 
exponent ranges from 0.77 (Nail)  to 1.20 (HC1); the 
K-refined values obtained from diatomic molecules 
display similar behaviour, but span a narrower range, 
0.892 (Nail)  to 1.122 (HC1). It is also possible to 
deduce energy-optimized K values for heavy atoms 

from the atomic and molecular energy-optimized 
exponents reported by Hehre and co-workers (Hehre, 
Stewart & Pople, 1969; Hehre, Ditchfield, Stewart & 
Pople, 1970). As noted for H above, these energy- 
optimized values display the same trends as, but often 
more exaggerated than, the K-refined (density-fitted) 
values. For example, for the heavy atoms Na to C1, 
Hehre et al. obtained scale factors of 1.40 (Nail) ,  
1.43 (MgH2), 1.26 (AIH3), 1.18 (Sill4), 1.04 (PH3) , 
1.02 (H2S) and 1.00 (HC1), compared with K-refined 
values of 1.061 (Nail) ,  0.984 (MgH), 0.999 (A1H), 
0.990 (Sill), 0.984 (PH3), 0.979 (H2S) and 0.976 
(HC1). The two different estimates of valence 
expansion and contraction upon bonding both sug- 
gest that the effect is small in covalent molecules, and 
larger in ionic species, and typically less than 20%. 
However, energy optimization weights the region near 
the nucleus heavily, whereas electron-density-fitting 
procedures such as K refinement depend more 
strongly on regions further from the nucleus. Energy- 
optimized exponents (kappas) are not necessarily 
appropriate for use in least-squares fitting of the 
electron density. 

The electron densities which have been constructed 
here are completely free of thermal motion, and the 
nuclear positions are known exactly. There can be no 
possibility of correlations between the K-refinement 
parameters (particularly K) and a thermal vibration 
parameter, U, nor is there any doubt as to the location 
of the proton in the hydride series. Both of these 
complications must be considered in any analysis of 
X-ray data. In the absence of these complicating 
effects, the H atom in the hydride series exhibits a 
maximum contraction of 18.2% (K = 1.182) in FH 
and a maximum expansion of 10.8% (K = 0.892) in 
LiH. These magnitudes are in excellent agreement 
with values obtained by Stewart, Davidson & 
Simpson, (1965) and Chandler et al. (1980), who 
obtained kappas of 1.166 and 1.126 respectively in 
monopole fits to an H2 electron-density function bey- 
ond the Hartree-Fock limit. They are at variance with 
the work of Coppens et al. (1979) who advocate 
K = 1-40 for H atoms. The latter work involves thermal 
motion and H atom positions as variables but it is 
not clear that those complications should affect K 
substantially. A 40% contraction of the H-atom elec- 
tron density seems extremely large in the light of both 
the present work and the energy-optimized values of 
typically 15 to 20% for a C- -H bond. 

A referee has suggested that spherical averaging of 
Apa(r ) with respect to the centroid of mol, x pa tr), rather 
than the nuclear position, may highlight reasons for 
this discrepancy. To investigate this point we have 
spherically averaged Apa(r) about the centroid of 
pm°'(r), z,,, [za=~zpm°l(r) dr/~pm°l(r)dr] for the 
first-row hydrides, and subsequently K refined the 
resulting spherical valence electron densities. The 
results are presented in Table 2. It is clear that the 
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Table 2. Kappas and charge transfers f rom K 
refinement o f  Apa(r) spherically averaged about the 

centroid o f  pm°t(r), z,, (see text) 

za is in/~, the positive z direction being from heavy atom to H in 
each case. %AK is the percent difference between the kappas 
obtained in fits to p~al(r) spherically averaged about the nucleus 
of atom a (Table 1) and about the centroid of p~°X(r) (this table). 
Other quantities are as for Table 1. 

Diatomic z~ K %AK Aq~m¢ Aqobs 

H +0-076 1.137 +2.4 +0.021 
H -0.076 1.137 +2.4 +0.021 0-000 

Li +0.236 1-343 +19.0 -0-528 
H -0.016 0-909 +0.2 +0-490 +0.414 
Be -0.042 1.047 -0.1 -0.320 
H -0.033 1.028 +0.8 +0.270 +0-193 
B -0.085 1.016 +1.1 -0.098 
H -0.043 1.114 +1.3 +0.126 +0.075 
C -0.040 0.999 +0.5 +0.007 
H -0.068 1.168 +2.1 -0-013 -0.016 

N -0.021 0.991 +0.2 +0.096 
H -0.104 1.203 +2.7 -0.113 -0.091 

O -0.011 0.981 -0-6 +0.180 
H -0-147 1.220 +3.1 -0.193 -0.164 

F -0.006 0.987 +0.1 +0-247 
H -0.185 1.222 +3.4 -0.249 -0.228 

centroid of pm°l(r) for H is significantly shifted from 
the position of the proton, always into the bond, 
typically by ---0.07 ,~ (for n 2 and CH) and by as 
much as 0.19 ,~ (for FH). Nevertheless, the resulting 
kappas for H are only marginally larger (---2 to 3%) 
than values in Table 1. Our results echo those 
obtained by Stewart et al. (1965) who found that the 
'best' monopole fit to the H2 rpolecule electron densit), 
was centred 0.070 ,~ into the bond (cf. za--0.076 A 
for H E in Table 2 of the present work). That work 
also reports that the contraction of the H l s  orbital 
upon bonding 'is about the same whether the 
spherical density is centred about the proton or 
floated off to an optimal position'. Apparently, the 
discrepancy between K values for H obtained from 
experiment and in model studies such as the present 
one cannot be explained solely in terms of the 
apparent movement of the proton into the bond. This 
matter deserves further attention, in model studies 
which must deal explicitly with factors such as nuclear 
positions, thermal motion, and probably the resol- 
ution of the X-ray data. 

We note that, with the exception of Li in LiH, the 
centroid of the heavy atom pm°'(r) is outside the bond. 
The effect on K, however, is even smaller than that 
observed for H above. The centroid of mot PLi (r) in LiH 
is 0.24,~ towards the proton, seemingly at variance 
with other results in Table 2. This is a direct con- 
sequence of the extremely diffuse Li 2s orbital, which 
results in apportioning most of pm°l(r) ,  except in the 
immediate vicinity of the proton, to p~i°l(r). In a sense 
it is an artefact of the Hirshfeld partitioning pro- 
cedure, leading to a large shift of the centroid from 
the nuclear position, and hence a large change in K. 

Coppens et al. (1979) have noted the difficulty 
associated with charge-density refinement of X-ray 
diffraction data for the alkali halides. Because of the 
diffuseness of the valence electron density in the alkali 
metals, in a typical X-ray data set there are few 
reflections which are affected by scattering by the 
valence electrons of these atoms, with the result that 
refinement of population and scaling parameters (P 
and K) usually leads to very poorly determined K 
values. In the present work the charges and kappas 
for the alkali metals in the alkali halides are very well 
determined, although dependent on the particular 
model used in their derivation; use of the present 
kappas in refinements with X-ray data may be 
worthwhile. 

4. Concluding remarks 

Monopole deformations experienced by atoms in 
molecules can be well modelled by radially expanded 
or contracted atomic valence-electron-density func- 
tions with a modified population. The K-refinement 
model is a particularly simple one and is less demand- 
ing of the data than the more sophisticated multipole 
models which are available for charge density analysis 
(e.g. Stewart; 1973, 1976). Nevertheless, the K- 
refinement procedure applied to the diatomics in this 
work is capable of reproducing, with surprising suc- 
cess, the monopole deformations and consequently 
the net charges on atoms in those molecules. 

The present model study differs from the normal 
application of the K-refinement strategy to X-ray 
diffraction data in several important respects. It has 
been restricted to separately fitting the Hirshfeld 
partitioned-atom centred monopole deformations 
obtained from near Hartree-Fock quality wavefunc- 
tions. In particular, the strategy we have chosen is 
not directly comparable to a multicentre K refinement 
based on X-ray diffraction data, especially when bear- 
ing in mind additional factors such as data-set resol- 
ution and thermal motion which are encountered in 
experimental electron-density studies. Nevertheless, 
we believe that, with the possible exception of hydro- 
gen, the major conclusions are valid and applicable 
to the analysis of experimental data and would not 
be substantially altered by modifying our simple 
approach. 
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Abstract 

An exact definition of  the 44 lattice characters listed 
by Niggli is thoroughly  discussed and is e lucidated 
by examples.  In order  to represent  the characters  
graphically,  use is made  of  the projection of  the 
Niggli-reduced basis vector e on the a, b plane. Not  
only is the projected end point  o f c  restricted to certain 
domains  in the plane by the reduct ion rules - cf. 
International Tables for  Crystallography (1987), 
Chap te r  9.3 (Dordrecht :  Kluwer)  - but for given con- 
stants A, B and F in the Niggli-reduced form this 
polygonal  domain  contains the locus of  each of  the 
characters  as a vertex or an edge or the area  of  the 
polygon. For  each of  the cases a = b = c, a = b < c, 
a < b = c and  a < b < c, nine figures fully cover all 
alternatives determined by five special values F =  
A / 2 ,  O, - A / 4 ,  - A / 3  and - A / 2  and the four  open 
intervals between them. Also, all normal ized Buerger 
bases which are not Niggli-reduced bases are shown 
in the same figures. 

0108-7673/91/010029-08503.00 

1. Introduction 

It has been shown (International Tables, 1987, refer- 
red to as IT87  hereaf ter)  that  the reduced basis of  
any given crystal lattice can be elucidated graphical ly  
by the perpendicu la r  project ion of  the reduced basis 
vector e upon the a, b plane.  Because of  the rules for 
cell reduction,  only points within certain regions in 
that  plane are al lowed as a possible projected end 
point  of  c, a and b being considered as given vectors. 
Drawings  of  the a, b plane,  showing these regions for 
only a l imited number  of  typical cases, fully illustrate 
all rules of  cell reduction.  

The reduced cell which we here refer to is the cell 
in t roduced by Niggli (1928). Since some other  types 
of  reduced cell have been discussed recently (Gruber ,  
1989), we shall denote it fur ther  as the 'Niggli  cell', 
and its normal ized basis as the 'Niggli  basis ' .  

Closely related to Ntggli cells are the lattice charac-  
ters, which constitute a classification of  lattices 
based mainly on lattice symmetry expressed in the 
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